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Abstract—Space-Time Data Fusion (STDF) is a methodology
for combing heterogeneous remote sensing data to optimally
estimate the true values of a geophysical field of interest, and
obtain uncertainties for those estimates. The input data sets
may have different observing characteristics including different
footprints, spatial resolutions, fields of view, orbit cycles, biases,
and noise characteristics. Despite these differences all observed
data can be linked to the underlying field, and therefore to each
other, by a statistical model. Differences in footprints and other
geometric characteristics are accounted for by parameterizing
pixel-level remote sensing observations as spatial integrals of
true field values within pixel boundaries, plus measurement
error. Both spatial and temporal correlations in the true field
and in the observations are estimated and incorporated through
the use of a space-time random effects (STRE) model. Once
the model parameters are estimated, we use them to derive
optimal (minimum mean squared error and unbiased) estimates
of the true field at any arbitrary location of interest, computed.
Standard errors of these estimates are also produced, allowing
confidence intervals to be constructed. The procedure is carried
out on a fine spatial grid to approximate a continuous field. We
demonstrate STDF by applying it to the problem of estimating
CO2 concentration in the lower-atmosphere using data from
the Atmospheric Infrared Sounder (AIRS) and the Japanese
Greenhouse Gasses Observing Satellite (GOSAT) over one year
for the continental US.

I. INTRODUCTION

The motivation for this work is the need to combine data
from multiple remote sensing instruments to paint a complete
and quantitative picture of the distribution of important geo-
physical quantities. We focus on carbon dioxide (CO2) in the
lower part of Earth’s atmosphere because this may be a proxy
for CO2 flux, and that flux is an extremely important quan-
tity for understanding the carbon cycle. No remote sensing
instrument observes flux directly, but NASA’s Atmospheric
Infrared Sounder (AIRS) and the Japanese Greenhouse Gases
Observing Satellite (GOSAT) observe different parts of the
atmospheric column which, taken together, can be used to
calculate an estimate of lower-atmosphere CO2. In order to
produce these estimates and quantify their uncertainties we
must account for differences in the input data sets: their reso-
lutions and other spatial and temporal sampling characteristics.
We also need to exploit spatial and temporal correlations in
both the observations and in the underlying true field and
correct for instrument biases.

The fundamental construct that allows us to do these things
is a statistical model that relates the observed data to the
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Fig. 1. Problems in remote sensing data analysis. The text boxes describe
six related problems. The left column articulates three of these. The top-
left box relates to making inferences about a single field of interest (e.g.,
carbon dioxide) from one remote sensing data set at a single time point. The
middle-left box relates to making inferences about a single geophysical field
from two data sets, also at a single time. The bottom-left box corresponds to
making inferences about two different geophysical fields when each is seen
by a different instrument. The right panel shows the same set of scenarios, but
for cases where multiple snapshots of the scene are available at a succession
of times.

underlying true field of interest at a specified set of locations
and times. To introduce the model and how it will be used, we
first discuss a basic statistical framework for modeling space-
time data and show how this framework addresses the problem
of spatial interpolation using a single data set. Then we show
that data fusion is just an extension of the same idea to multiple
data sets simultaneously. Finally, we extend the framework to
include time so that we take full advantage of both spatial and
temporal relationships in the data.

Figure 1 shows the relationships among six different flavors
of the space-time interpolation problem, including data fusion.
Each box in the figure states the problem it represents (e.g.,
infer the true values of two fields from two different remote
sensing images at multiple time points), and gives a specific
name (e.g., multiple process, multiple source, space-time data
fusion) to that particular version. In this article, we will build
up the story starting with the box in the upper-left and ending
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Fig. 2. Remote sensing data and their relationship to the true quantity of
interest. The left panel shows the true geophysical field (A). (B) shows the
field as it is viewed by a remote sensing instrument. The image is pixelated
because each pixel is the average of the true values in (A) belonging to it. The
instrument has measurement error, so (C) shows the image corrupted by noise.
Noise is assumed to be independent from pixel to pixel. Finally, some pixels
may not be observed at all due to instrument observing characteristics (e.g.,
some instruments cannot see through clouds). (D) shows the image under
these conditions.

with the box in the lower-right: multiple process, multiple
source, space-time data fusion, which we generically refer to
as Space-Time Data Fusion (STDF) since the other five boxes
represent special cases of it.

In Section II, we present a basic model for remote sensing
data that articulates quantitatively the relationships between
the data we observe and the unobserved true quantity of
interest. In Section III we use that model to address the
problem of spatial interpolation using a single data set, then
extend that to data fusion beginning with one quantity of
interest and two data sources but ignoring time. Next, we
expand the paradigm to cover the case where there are two
quantities of interest, each viewed by one instrument, and
finally we incorporate time into our model yielding the STDF
methodology. In Section IV we apply STDF to one year of
data from AIRS and GOSAT to estimate lower-atmosphere
CO2 for one year over the continental US. We close with a
short discussion of these results.

II. THE STATISTICAL NATURE OF REMOTE SENSING DATA

Remote sensing data are, by their very nature, statistical.
Satellite instruments do not directly observe geophysical vari-
ables, they observe radiances from which geophysical informa-
tion is inferred. Observations from space are typically made on
spatial units coincident with an instrument’s pixels, while the
true physical process is continuous in space. This discretization
of the scene is one source of uncertainty. Another source is that
the instrument itself adds measurement error at the pixel level.
This error includes both bias (“systematic” error) and variance
(“random” error). Finally, there may be additional bias and
variability due to the inability of the instrument to observe
under certain conditions (e.g. clouds). These relationships are
illustrated in Figure 2.

The problem is that we only have access to information like
that in panel (D) in Figure 2, and we want to infer the true
continuous field in panel (A). We can do this using a spatial
statistical model that relates the observations in panel (D) to
the true field in panel (A).

The relationships necessary to make an inference about (A)
based on information from (D) can be quantified precisely.

Let s be a point location (e.g, latitude and longitude) in the
domain shown in panel (A) of Figure 2. Denote the domain
by D, and let Y (s) be a random variable capturing the value
of the geophysical variable (equivalently, geophysical “field”)
of interest at location s in D. The remote sensing instrument
discretizes the scene into pixels (as shown in panel (B)), so
we define

Y (B) =
1

|B|

∫

u∈D
Y (u) du, (1)

as the noiseless value of Y (·) at the resolution of the pixel,
denoted by B. Y (B) is simply the average of Y (s) for all s in
the pixel B. The instrument adds random measurement noise
to what it sees:

Z(B) = Y (B) + ε(B),

where ε(B) is an independent Gaussian measurement er-
ror term with V ar(ε(B)) = σ2

ε , and possibly some bias,
E(ε(B)) = µε. This is shown graphically in panel (C) as
a noisy version of panel (B). Finally, some pixels may have
missing data as shown in panel (D). We concatenate all the
observed values for non-missing pixels in panel (D) to form
a column vector,

Z = (Z(B1), . . . , Z(BN ))
′
,

which captures the data in the N non-missing pixels.

III. INFERENCE FROM REMOTE SENSING DATA

In this section we use the model presented in Section II to
develop the models we will use for data fusion.

A. Single Process Spatial Interpolation and Data Fusion

The simplest inference problem related to remote sensing
data is to infer the geophysical field, sometimes called the
geophysical “process”, at a specified location (or on a grid
of locations) from aggregated, noisy and incomplete data like
those shown in panel (D) of Figure 2. A simple linear estimate
of Y (s) is,

Ŷ (s) = a′sZ,

where as is chosen to minimize the mean squared error,

MSE(Y (s), Ŷ (s)) = E||Ŷ (s)− Y (s)||2, (2)

subject to the condition that the estimate be unbiased:

E(Ŷ (s)) = E(Y (s)). (3)

The problem can be solved using the method of Lagrange
multipliers to minimize (2) subject to (3).

Now suppose a second remote sensing data set, possi-
bly with different resolution and statistical characteristics, is
available (see Figure 3). As before, denote the geophysical
variable’s value at location s by Y (s) but now we have two
data vectors,

Z1 = Z(B11), . . . , Z(B1N1
)
′
, Z2 = Z(B21), . . . , Z(B2N2

)
′
,
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Fig. 3. A true geophysical field (left), and two remote sensing instruments’
views of it (center and right).

where Bkm denotes the mth non-missing footprint in the data
set for instrument k.

For technical reasons it is necessary to make a slight mod-
ification to the definition of Y (B) in (1). Instead of defining
Y (B) as an integral over an infinite number of locations s
in a pixel, we partition the domain into a set of very fine,
non-overlapping quantum spatial units called basic areal units
(BAU’s). Each location s is associated with one of these BAU’s
so s is not continuously varying, but in practice it is nearly so.
The domain D is defined to be the union of all the identifying
points for the BAU’s. The reason for this modification is so
that in practice there are a countable number of locations to
be considered in any calculation. The modified definitions of
Y (Bkm) and Zk(Bkm) are

Y (Bkm) =
1

|D ∩Bkm|
∑

u∈D∩Bkm

Y (u), and

Zk(Bkm) = Y (Bkm) + εk(Bkm).

Note that Y (B1m1
) and Y (B2m2

) are different from each
other because they are averages over different spatial foot-
prints, and that we never actually observe them.

As was the case earlier, the optimal (minimum mean
squared error, unbiased) estimate of Y (s) is of the form

Ŷ (s) = a′1sZ1 + a′2sZ2, (4)

where a1s and a2s are the solutions to the constrained mini-
mization of (2) subject to the unbiasedness condition, (3). We
call a1s and a2s the data fusion coefficients and (4) the data
fusion estimator of Y (s). While it is intuitively clear that the
data fusion problem can be solved this way, there is a more
general formulation that will be required in order to introduce
time into the framework.

The formulation in (4) focuses on solving for the data
fusion coefficients, (a1s,a2s), at every location s for which
an inference will be made. However, our interest is not so
much in the coefficients themselves as it is in the estimates of
Y (s). A model for Y (s) is

Y (s) = µ(s) + ν(s) + ξ(s), (5)

µ(s) = t(s)
′
α, ν(s) = S(s)

′
η.

The model in Equation (5) is called the Spatial Random
Effects model (SRE), and it expresses Y (s) as a sum of
three components. The first component, µ(s), is called the
trend, and reflects the large scale behavior of Y . The trend is

the component of Y (s) that is easily explained by a simple
statistical model such as the regression, µ(s) = t(s)

′
α. t(s)

is (say) a vector of the latitude and longitude of location s,
and α is the least squares regression coefficient.
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Fig. 4. Multiresolution basis for encoding location u.

The component ν(s) is called the spatial covariance term,
and it captures the spatial covariance structure of Y (s); we
assume that it is Gaussian with mean zero and with the
covariance structure Cov(ν(u), ν(v)) = S(u)

′
η S(v). That is,

we assume that the covariance between Y (·) at two locations,
u and v can be modeled as a linear combination of the
elements of a hidden state vector, η. S(s) is the weight vector
for location s that tells us how to weight the elements of η
in order to arrive at an approximation for that portion of the
structure of Y (s) that is not captured by the trend.

The elements of η correspond to a set of locations defined
at several specified levels of spatial resolution. For example,
in Figure 4 the domain is divided into four subregions with
centers m1,m2,m3, and m4 at the coarsest level of spatial
resolution, into 16 subregions at the second level of resolution,
and into 64 subregions at the third level of resolution. The
centers for the latter two levels are not shown. A spatial
location u is encoded by the local bisquare function value
of its distances from these 84 centers. The local bisquare
function decays as shown in the right panel of Figure 4. These
84 distances are the components of the weight vector S(u),
and η is also of dimension r = 84 in the example. The
encoded values of the locations of interest are said to form
a multiresolution basis set, and, since the encoding scheme is
chosen by us, they are known and fixed. η, on the other hand,
is not known and must be estimated from the data. It turns out
that η can be estimated from footprint level data as we shall
see below.

The final component of the model (5) is the fine-scale
variation term, ξ(s). This accounts for variability not captured
by the trend and spatial covariance terms. One can also think
of it as sub-BAU variation. It is assumed to be Gaussian with
mean zero and variance σ2

ξ for all locations.
The estimate of Y (s) implied by the model (5) is

Ŷ (s) = µ̂(s) + ν̂(s) + ξ̂(s),

= t(s)
′
α̂ + S(s)

′
η̂ + ξ̂(s). (6)

To proceed, we need to estimate α, η, and ξ(s). It will be
helpful to define the following quantities for the kth data set,



k = 1, 2:

Yk = (Y (Bk1), . . . , Y (BkNk
))
′
,

Y (Bkm) =
1

|D ∩Bkm|
∑

u∈(D∩Bkm)

Y (u),

Tk = (t(Bk1), . . . , t(BkNk
))
′
,

t(Bkm) =
1

|D ∩Bkm|
∑

u∈(D∩Bkm)

t(u),

µk = (µ(Bk1), . . . , µ(BkNk
))
′
,

µ(Bkm) =


 1

|D ∩Bkm|
∑

u∈(D∩Bkm)

t(u)
′
α




= t(Bkm)
′
α,

νk = (ν(Bk1), . . . , ν(BkNk
))
′
,

ν(Bkm) =
1

|D ∩Bkm|
∑

u∈(D∩Bkm)

ν(u),

ξk = (ξ(Bk1), . . . , ξ(BkNk
))
′
,

ξ(Bkm) =
1

|D ∩Bkm|
∑

u∈(D∩Bkm)

ξ(u),

Sk = (S(Bk1), . . . ,S(BkNk
))
′
,

S(Bkm) =
1

|D ∩Bkm|
∑

u∈(D∩Bkm)

S(u),

εk = (εk(Bk1), . . . , εk(BkNk
))
′
.

These vectors and matrices of footprint-level quantities are
defined as the spatial averages of the corresponding BAU-level
quantities associated with locations within those footprints.
Note in particular that µ(Bkm) can be expressed as a linear
combination of t(Bkm) and α, which is independent of level.
The basis functions S(Bkm) also obey this linear aggregation
relationship, and this is crucial because it allows us to write,

ν(Bkm) =
1

|D ∩Bkm|
∑

u∈(D∩Bkm)

ν(u),

=


 1

|D ∩Bkm|
∑

u∈(D∩Bkm)

S(u)
′


η,

= S(Bkm)
′
η, (7)

and hence η is also independent of level of resolution. Both
α and η can therefore be estimated from footprint-level data.
The model relating all the data to the unknown quantities is
(

Z1

Z2

)
=

(
Y1

Y2

)
+

(
ε1
ε2

)
,

=

(
T1

T2

)
α +

(
S1

S2

)
η +

(
ξ1
ξ2

)
+

(
ε1
ε2

)
,

or more compactly,

Z = Tα + Sη + ξ + ε, (8)

where Z =
(
Z1
′,Z2

′)′, T =
(
T1
′,T2

′)′, S =
(
S1
′,S2

′)′,
ξ =

(
ξ1
′, ξ2

′)′, and ε = (ε1
′, ε2

′)
′.

To estimate α, we regress Z on T if there is no bias
in the instrument measurements. No bias means that the
expectations of ε1(B1m) and ε2(B2m) are both zero. It is,
of course, possible that the instruments do have biases which
we would then model as E(ε1(B1m)) = c1µ(B1m) and
E(ε2(B2m)) = c2µ(B2m) where ck are multiplicative bias
coefficients. The choice of a multiplicative bias model rather
than an additive one is somewhat a matter of convenience at
this point. If the bias coefficients are non-zero, then we define

C =

[
(1 + c1)IN1

0
0 (1 + c2)IN2

]
,

where INk
is the Nk ×Nk identity matrix, and regress Z on

CT to account for the biases. The solution is,

α̂ =
[
(CT)

′
(CT)

]−1
(CT)

′
Z.

While α̂ is an estimate and therefore has a variance, we treat
it as fixed from this point forward.

To estimate η, we use a Bayesian formalism, and assume
that a priori η is (r-dimensional) multivariate Gaussian with
mean zero and (r × r) covariance matrix K:

η ∼ Nr(0,K).

The optimal a posteriori estimate of η is

η̂ = E(η|Z) = G(Z− µ), G = KS′ΣZ
−1. (9)

The covariance matrix of Z is ΣZ and µ = (µ1
′,µ2

′)
′. Using

an Empirical Bayes approach, we estimate K off-line and
consider it fixed for the remainder of this analysis. Currently
we use the method-of-moments for this. Details can be found
in [1].

Finally, to estimate ξ(s) we assume a priori that

ξ(s) ∼ N(0, σ2
ξ ),

with σ2
ξ estimated off-line as was done for K above (see [1]).

The optimal a posteriori estimate of ξ(s) is

ξ̂(s) = E(ξ(s)|Z) = b(s)
′
ΣZ
−1(Z− µ), (10)

where b(s) =
(
b1(s)

′
,b2(s)

′)′, and

bk(s) = σ2
ξ

(
I(s ∈ Bk1)

|D ∩Bk1|
, . . .

I(s ∈ BkNk
)

|D ∩BkNk
|

)′
.

Although η and ξ(s) are independent a priori, they are not
independent a posteriori because they both depend on the same
data, Z. The formulas for η̂ and ξ̂(s) given in (9) and (10)
are correct, but when we introduce time, this dependence will
become important.

Now using (6) our estimate of Y (s) is

Ŷ (s) = µ(s) + ν̂(s) + ξ̂(s),

= t(s)
′
α + S(s)

′
η̂ + ξ̂(s),

= t(s)
′
α + S(s)

′
KS′ΣZ

−1(Z−Tα)

+ b(s)
′
ΣZ
−1(Z−Tα),

= t(s)
′
α +

(
S(s)

′
KS′ + b(s)

′)

×ΣZ
−1(Z−Tα). (11)



We treat α, and therefore µ also, as known, fixed quantities
here. The variance of the estimate is

V ar(Ŷ (s)) =
[(

S(s)
′
KS′ + b(s)

′)
ΣZ
−1]ΣZ

×
[(

S(s)
′
KS′ + b(s)

′)
Σ−1Z

]′
. (12)

We can see from the form of (11) that the fusion coefficients
from Equation (4), as = (a1s

′,a2s
′)
′, are given by

as =
(
S(s)

′
KS′ + b(s)

′)
ΣZ
−1,

and are applied to the detrended data, (Z − Tα), prior to
forming the final estimate of Y (s).

The reader may notice that the formulas in (11) and (12)
depend on being able to calculate the inverse of the very large
(N1 + N2) × (N1 + N2) matrix, ΣZ. This is the variance-
covariance matrix of all the data from both instruments at
all locations at which they observe. The form of ΣZ lends
itself to the application of the Sherman-Morrison-Woodbury
matrix inversion formula [2] which allows for computationally
efficient inversion. Details are omitted here in the interest of
space, but can be found in [1].

B. The Multiple Process, Multiple Source Case

The methodology of the previous section generalizes read-
ily to the case of two (or more) quantities of interest, or
“processes”. For example, in this project, the two processes
of interest are two different features of the CO2 column
in the atmosphere: total column CO2, which is observed
by Japan’s Greenhouse gases Observing Satellite (GOSAT),
and mid-tropospheric CO2, which is measured by NASA’s
Atmospheric Infrared Sounder (AIRS) instrument. We let
Y(s) = (Y1(s), Y2(s))′ be the vector of process values at
location s, where Y1(s) denotes total column CO2, and Y2(s)
denotes mid-tropospheric CO2. All the formulas developed
earlier apply here, but there are now two α’s, two η’s, and
two ξ(·)’s, one for each process.

Define

µC =

(
T1 0
0 T2

)(
α1

α2

)
= TCαC ,

νC =

(
S1 0
0 S2

)(
η1

η2

)
= SCηC , and

ξC =

(
ξ11
ξ22

)
,

where ξkk = (ξk(Bk1), . . . , ξk(BkNk
))
′. The formulas in (8)-

(11) holds in the multiple process case with Y for Y , µC for
µ, νC for ν, and ξC for ξ. The formulas for the components
of these terms generalize straightforward ways to the vector
case, as does the variance in (12). Estimation of the required
parameters becomes more complex, but still tractable. Details
can be found in [3].

C. Multiple Process, Multiple Source Space-Time Data Fusion

In this section we present Space-Time Data Fusion for the
multiple process, multiple source problem. In general, let θ̂t
be the estimate of the quantity θ at time t. Let θ̂t|t−1 be the
estimate of θ at time t based on data up to and including time
t− 1, and let θ̂t|t be the estimate of θ at time t based on data
up to and including time t.

The main idea behind STDF is to use the Kalman filter to
update the joint estimate of (ηt, ξt) at each time step given the
previous estimates and new data acquired at that time point.
At time step t we “forecast” the new value of ηt from the
relation (13) (before seeing the data) to produce η̂t|t−1. Then,
after the data for time step t arrive, we “update” the forecast
in light of the data. ξt is not forecasted at each time step,
but is updated jointly with ηt because the two quantities are
statistically dependent.

STDF assumes a state-space model that employs an order-
one, vector auto-regression as the state equation,

ηCt+1 = Ht+1η
C
t + ζCt+1, (13)

where ηCt is an (r1 + r2)-dimensional state vector, and Ht is
the (r1 +r2)× (r1 +r2) state transition matrix at time t. ζCt+1

is an (r1 + r2)-dimensional zero-mean Gaussian vector with
covariance matrix Ut+1. ζt+1 is assumed to be independent
of ηCt . The data observed by instrument k over the footprint
A at time t is generated according to the following model,

Z
(k)
t (A) = µ

(k)
t (A) + S

(k)
t

′
(A)η

(k)
t + ξ

(k)
t (A) + ε(k)(A),

k = 1, 2. Note that we have moved the data set index k to a
superscript now. We stack the scalars into column vectors and
the row vectors into matrices to form the following model for
all the observed data at time t for instrument k:

Z
(k)
t = µ

(k)
t + S

(k)
t

′
η
(k)
t + ξ

(k)
t + ε

(k)
t , (14)

We again stack the elements of (14) to form a meta-data set,

ZCt = µCt + SCt
′
ηCt + ξCt + εCt ,

where ZCt =
(
Z

(1)
t

′
,Z

(2)
t

′)′
, µC =

(
µ

(1)
t

′
,µ

(2)
t

′)′
, ηC =

(
η
(1)
t

′
,η

(2)
t

′)′
, ξC =

(
ξ
(1)
t

′
, ξ

(2)
t

′)′
, εC =

(
ε
(1)
t

′
, ε

(2)
t

′)′
, and

SCt =

(
S
(1)
t 0

0 S
(2)
t

)
.

Given all the data from both instruments at time t− 1, ZCt−1,
and at time t, ZCt , the STDF algorithm is:

1) Estimate Kt,t, Kt−1,t−1, and Kt,t−1 where

Kt1,t2 = Cov
(
ηCt1 ,η

C
t2

)
.

2) Compute the state transition matrix,

Ht = Kt,t−1
′Kt,t

−1.

3) Estimate Ut = Kt,t −HtLt, where Lt = Kt+1,t.



4) Compute the one-step-ahead forecast is

ηCt|t−1 ≡ E
(
ηCt |ZCt−1

)
= Htη

C
t−1|t−1.

5) Estimate the forecasted prediction error matrix,

Pt|t−1 = E

[(
ηCt|t−1 − ηCt

)(
ηCt|t−1 − ηCt

)′]

= HtPt−1|t−1Ht
′ + Ut.

6) Compute the Kalman gain matrix,

Gt = Pt|t−1
(
SCt
)′[

SCt Pt|t−1
(
SCt
)′

+ Dt

]−1
,

where Dt = V ar
(
ξCt + εCt

)
.

7) Compute the updated forecast,

ηCt|t = ηCt|t−1 + Gt

(
ZCt − µCt − SCt η

C
t|t−1

)
.

8) Compute the updated forecast prediction error matrix,

Pt|t = Pt|t−1 −GtS
C
t Pt|t−1.

9) Compute the updated estimate of ξCt|t at the target
location s:

ξCt|t(s) = cCt (s)
′[(

SCt
)′

Pt|t−1S
C
t −Dt

]−1

×
(
ZCt − µCt − SCt η

C
t|t−1

)
,

where cCt (s) = Cov
(
ZCt , ξ

C
t (s)

)
.

10) Compute the optimal estimate of Y(s, t) =
(Y1(s, t), Y2(s, t))

′,

Ŷ(s, t) =
(
µCt (s) + SCt (s)ηCt|t + ξCt|t(s)

)
. (15)

11) Compute the mean squared error matrix for Ŷ(s, t),

V ar(Ŷ(s, t)) = SCt (s)
′
Pt|tS

C
t (s) + σ2

ξ

− cCt (s)
′[

SCt Pt|t−1S
C
t −Dt

]−1
cCt (s)

− 2SCt (s)
′
Kt,tS

C
t Σ−1t,t cCt (s), (16)

where Σt,t = V ar(ZCt ), and σ2
ξ is a 2 × 2 diagonal

matrix with V ar(ξ(k)(·)) on the diagonal.

IV. ESTIMATING LOWER-ATMOSPHERE CO2
We performed multiple process, multiple source, Space-

Time Data Fusion to estimate the vector of process values of
total column and mid-tropospheric CO2 on a half-degree grid
over the continental US from February 2010 through Decem-
ber 2010 in two-week blocks. Y(s, t) = (Y1(s, t), Y1(s, t))

′,
here Y1(s, t) is total column CO2 at location s and time t, and
Y2(s, t) is mid-tropospheric CO2 at location s and time t. The
estimate of lower-atmosphere CO2 is a simple linear function
of this vector:

∆̂(s, t) = (1, −1) · Ŷ(s, t). (17)

The uncertainty of the estimate ∆̂(s, t) is its standard error,

σ(∆̂(s, t)) =

√
(1, −1) V ar(Ŷ(s, t)) (1, −1)

′
. (18)

AIRS footprint grid

~ 700 km

~ 1500 km

GOSAT footprint 
~ 10 km diameter,  
~ 150 km apart

~ 700 km

AIRS footprint
~ 90 km diameter

~ 
22

00
 k

m

ACOS

AIRS

Al
tit

ud
e 

(k
m

)

Instrument sensitivity

Fig. 5. AIRS and GOSAT horizontal footprints and vertical measurement
characteristics. In the instrument sensitivity graph, GOSAT is labeled “ACOS”
since JPL’s Atmospheric Carbon Dioxide Observations from Space team
actually produced the data used here.

Our total column CO2 data come from the GOSAT in-
strument, which provides observations on footprints 10 km
in diameter and spaced roughly 150 km apart. GOSAT ob-
serves only over land. Mid-tropospheric CO2 data come from
NASA’s AIRS instrument, which observes on 90 km diameter
footprints that are spaced roughly 90 km apart over both land
and ocean. Figure 5 is a schematic diagram of the footprint
geometries of the two instruments. GOSAT was designed
with a very small footprint in order to maximize the number
of cloud-free footprints. AIRS has a very large footprint by
comparison, and it achieves near-global coverage every two
days. These two geometries complement each other, as do
the sensitivities of the two instruments to different parts of
the column shown at the bottom of Figure 5. The primary
difference in sensitivities is in the lower part of the atmosphere,
hence the logic that suggests differencing them to estimate
lower-atmosphere CO2.

We organized the data into 21, 15-day periods indexed
by t = 1, 2, . . . , 21 and aggregated all data for period t for
GOSAT into Z

(1)
t and all data for AIRS into Z

(2)
t . The bias

for GOSAT was set to 20 parts per million (ppm) after some
consultation and experimentation (discussed below). The bias
for AIRS was determined to be zero on the basis of our own
comparison of AIRS CO2 retrievals to validation data provided
by the AIRS team. Measurement error variances for the two
data sets were estimated along with the other parameters of
the underlying space-time model discussed earlier. The mul-
tiresolution spatial basis set, S, has three levels of resolution
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Fig. 6. Results of Space-Time Data Fusion to estimate lower-atmosphere
CO2 for one time period. The top panel are the estimates, and the bottom
panel are the associated uncertainties.

and 386 multiresolution centers. We produced estimates of
Y(s, t) per Equation (15) for point locations s spaced every
half-degree of latitude and longitude over the continental US
for each of the 21 time points. The error covariance matrix,
Equation (16), is also computed for each estimate. All that
remains is to compute (Ŷ1(s, t)− Ŷ2(s, t)) from Equation (17)
and its standard error from Equation (18).

Figure 6 shows the results for one representative time
period, with the estimates, ∆̂(s, t), in the top panel and the
corresponding uncertainties, σ(∆̂(s, t)) in the bottom panel.
Several features are obvious. First, there is a prominent hotspot
over New Mexico, but notice also that these estimates have
high uncertainties. The estimate at the center of the hotspot
region is about 10 parts per million (PPM), with a standard
error of 2 PPM. A 95 percent confidence interval for lower-
atmosphere CO2 is then [10 − 1.96(2), 10 + 1.96(2)]. The
lower bound of this interval is near 6 PPM and so would not
appear to be quite so outstanding. Second, there is a strong
southwest-northeast gradient that is consistent with what is

known about the effect of net ecosystem exchange: CO2 is
emitted as green plants reach the peak of their photosynthetic
activity in the summer. Finally, note that the standard errors
tend to be higher along the coasts since, with land data only,
there are less neighboring data with which to work.

V. CONCLUSION

We have demonstrated that STDF can be used to leverage
both spatial and temporal dependence to estimate a function
of two spatially continuous geophysical fields from noisy
observations with different statistical characteristics. The maps
in Figure 6 look like they may provide reasonable estimates,
but these have yet to be validated against independent in-situ
observations. It is also worth emphasizing that the validity of
both the estimates and uncertainties depends on the means and
standard deviations of the measurement error distributions and
on other modeling choices discussed earlier. In this exercise,
we used measurement-error statistics based on the judgment
and experience of members of the instrument teams. A more
rigorous analysis will ultimately be required as will a careful
evaluation of the sensitivities of our results to the other
modeling assumptions.

Near-term methodological improvements center on reducing
the duration of a time step in the STDF analysis. Currently,
our method aggregates data over 15 days because the GOSAT
data are sparse, and estimates of statistical model parameters
are unstable with fewer observations. However, CO2 transport
occurs on shorter time scales, and the science community
would prefer time steps on the order of three days. We have
used the method of moments to estimate model parameters
here, but we are investigating the expectation maximization
(EM) algorithm as a more stable alternative. We are also
beginning the process of validating our lower-atmosphere CO2
estimates by comparing them to in-situ observations with the
help of the instrument validation teams.
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